Kapuk a látáson


Ütött-kopott, s mégis bájos Piran, Szlovénia. Egyszerű de nagyszerű Duino, Olaszország. Szerelem első látásra kékben Stanjel, Szlovénia. Ferences templom bejárata Maribor, Szlovénia.

A szem felépítése és működése Az emberi szem belső optikai felépítése nagyon hasonlít a digitális fényképezőgéphez, és a videokamerához.

Ezek az eszközök lemásolják a szem felépítését. A kamera, fotókészülék optikája a szaruhártyának, a csarnokvíznek és a szemlencsének felel meg. A szivárványhártya írisz a kamera fényrekesze a blende. A szembogár pupilla megfelel a blendenyílásnak.

kapuk a látáson

Az üvegtesti tér a kamera lencséje és milyen nézet 1 fényérzékelő elem közti távolság. Az ideghártya retinaa fényérzékelő elemnek felel meg. A szem két részből álló objektívvel rendelkezik. A külső és fontosabb lencséjét a szaruhártya corneaa belső alakváltoztatásra képes kisegítő lencséjét pedig a szemlencse képezi. A szaruhártya a külvilág felé biztosítja a szem védelmét. A környezetünkből érkező fénysugarak áteresztése, és elsődleges fókuszálásának elvégzése a feladata.

A szaruhártya nem veri vissza a fényt, hanem közel százszázalékosan átengedi azt. A szivárványhártya színe határozza meg a szem színét. A szivárványhártya nyílásának, a pupillának az átmérőjét a szemmozgató izmok a szembe jutó fény erősségének függvényében, reflexszerűen változtatják.

kapuk a látáson

Napfényben a pupilla szűk, kevesebb fényt enged a szembe, gyenge fényviszonyoknál a pupilla mérete növekszik, és így a szembe több fény jut. A pupillaméret kapuk a látáson célja, nem a szembe jutó fény erejének a kiegyenlítése, hanem az, hogy sötétben fényérzékenyebb, világosban pedig élesebb látást biztosítson.

A pupilla átmérője normál állapotban 4 mm, de a fénymennyiség intenzitásának függvényében az átmérője 2 mm és 8 mm között, a felülete pedig arányban változhat. A sugárizmai segítségével a lencse görbületét meg tudjuk változtatni úgy, hogy a szem képes különböző távolságban levő tárgyakra fókuszálni.

kapuk a látáson

A tárgyakról visszaverődő fényt a szaruhártya és a szemlencse együttműködése kicsinyített, fordított állású és valódi, a retinára fókuszálja. Neurológiai szempontból látórendszerünk működése: a szemünket érő fény a retina látósejtjeit ingerelve először kémiai jellé, majd elektromos impulzussá alakul, amit a látóideg rostjai agyunkba vezetnek.

A két szemünkkel látott kép egymástól kismértékben eltér, de agyunk térbeli képpé hogyan nézzen ki rossz látással át. A 0,3 mm átlagos vastagságú ideghártya tartalmazza a foto receptorokat és kapuk a látáson utánuk kapcsolt idegsejt-osztályt, valamint a látóideget, ami összeköti a szemet az aggyal.

Munkatársaink elérhetőségei

A retina közvetlen kiterjesztése a központi idegrendszernek, az agy részének tekinthető. A retinán levő, fényt érzékelő receptorokat, az alakjuk alapján pálcikának és csapnak nevezik. A mintegy millió pálcika biztosítja a szürkületi és esti fényben történő, valamint az oldalirányú, perifériális látást.

Átmérőjűk körülbelül 2 µm, hosszúságuk µm és hengeres formájúak.

Színvakság – Wikipédia

A nappali fényben működő mintegy millió csap rövidebb és csonka kúp alakú, legnagyobb átmérőjük mindösszesen µm. A pálcikákkal nem látjuk a színeket, viszont rendkívül érzékenyek, adott esetben akár foton érzékelésére is képesek. A fényingerekre adott válaszidejük sokkal kisebb, mint a csapoké. A látóterünkben észlelhető gyors mozgások követéséről a pálcikák gondoskodnak.

A csapok biztosítják a színes látást. Ezek azt teszik lehetővé, hogy háromféle pigment tartalmú csap van, így beszélhetünk vörös fényre, zöld fényre és kék fényre érzékeny csapokról.

kapuk a látáson

A színeknek érzékelése fotokémiai folyamat útján valósul meg. A csapok érzékenysége mintegy ezerszer kisebb, mint a pálcikáké.

Leírása[ szerkesztés ] A retina kétféle fotoreceptort tartalmaz: a csapokat, amelyek a színlátásért felelősek, és a pálcikákat, melyek a szürkületi, a fekete-fehér látásunkért felelősek.

A látósejtek közel sem egyenletes eloszlásúak. A szem optikai tengelyének vonalába a látósugárba helyezkedik el, a mm átmérőjű sárga folt macula luteaahol a látósejtek koncentrálódnak, ettől távolodva sűrűségük fokozatosan csökken. A sárga folton belül található egy gombostűfejnyi, 0, kapuk a látáson átmérőjű bemélyedés, ahol a retina vastagsága mindössze 0,1 mm és a legnagyobb a látósejtek sűrűsége.

Ez a látógödör fovea centralis, vagy foveolacsapsejttel rendelkezik és pálcikamentes. Ha a fovea centralis metszetét erős mikroszkóp alatt nézzük, akkor a csapok méhsejtszerű elrendezésben, szorosan egymáshoz tapadva vannak.

Navigációs menü

Itt a csapok a retina egyéb helyein található csapokhoz képest is jóval vékonyabbak, és sűrűbben helyezkednek el. A látógödör teszi lehetővé az ember számára a kifinomult éleslátást, például egy cérna befűzését egy tűbe, vagy a szálka kiszedését a kézből. Összehasonlítva a telihold képe a retinán körülbelül 0,2 mm átmérőjű pontként képeződik. A sárga foltban pálcikák is vannak. A sárgafolti látás látószöge fok a vízszintes, és 3 fok a függőleges síkban. Ugyan a sárgafolti látás is éles, de közel sem annyira, mint a látógödöri.

A sárgafolt segítségével tudunk olvasni. A foveától távolodva fokozatosan a pálcikák veszik át a látás szerepét. A receptorok és a látásélesség eloszlása a retinán A mm átmérőjű látóideg egymillió idegszálat tartalmaz.

Ha ezt összevetjük a csapok és pálcikák számával, akkor hasonlóan mint a mai veszteséges képtömörítést végző digitális fényképezőgépeknél, a retinában is az információ tömörítése megy végbe.

A receptorok által rögzített kép tömörítése azonban nem egyenletes. A központi mélyedésben minden csapsejthez külön kimenő idegszál csatlakozik, tehát itt nem beszélhetünk tömörítésről, a retina perifériáján viszont akár kétszáz receptorból származó összesített jelet továbbít egy idegrost.

Itt már igen jelentős a tömörítés. Másképen megfogalmazva a retina nemcsak érzékeli a fényt, hanem elvégzi a látott kép elő feldolgozását.

A retina idegsejtjei a keresztirányú összeköttetések miatt érzékelik az egymás melletti receptorok intenzitáskülönbségét.